笔算两位数乘两位数教学设计

时间:2025-06-15 23:42:13
笔算两位数乘两位数教学设计

笔算两位数乘两位数教学设计

作为一名教师,总不可避免地需要编写教学设计,编写教学设计有利于我们科学、合理地支配课堂时间。教学设计应该怎么写才好呢?下面是小编为大家收集的笔算两位数乘两位数教学设计,欢迎大家借鉴与参考,希望对大家有所帮助。

笔算两位数乘两位数教学设计1

教学目标:

1、理解乘法的意义和两位数乘两位数的算理,让学生经历发现两位数乘两位数的计算方法的全过程,体验计算方法的多样化;

2、感受“借助旧知识,解决新问题”的策略意识。

3、通过应用,初步体验两位数乘两位数在生活、数学应用中的广泛性,拉近算式与生活的联系,并体验探究、应用过程中的成功感。

教学重点:理解乘法的意义和两位数乘两位数的算理,掌握两位数乘两位数的笔算方法,能正确地进行计算。

教学难点:理解用一个数的十位上的数去乘另一个,得数的末尾与十位对齐的道理。

教学过程预设:

一 、创设情境,提出问题

听说小朋友这几天在学乘法,先来考考你们

1、先后出示12×3 12×30

师:12×3多少?是几位数乘几位数(两位数乘一位数)你知道这个算式的

乘法意义吗?(乘法意义)

师:那12×30呢?是几位数乘几位数?(整十数乘两位数)它的乘法意义?

2、师:老师对今天这节课小朋友的学习更有信心了。小朋友,你们有吗?好,现在上课。

3、师:李老师来自镇小,在算我们学校总人数的时候遇到了这样一个问题

临城小学平均每班有31人,那全校12个班有几人?

(1)读题

(2)怎样列式?31×12

(3)这是几位数乘几位数?(两位数乘两位数)它的乘法意义你知道吗?那么谁能说说,31×12它的结果大约是多少?你是怎么估计的

(4)我知道了镇小大概的人数,那到底准确的有多少人呢?大家还没告诉老师呀,要计算这道题,我们以前学过吗?遇到新问题了怎么办?能不能把它变成我们已经学过的知识?

二、探索尝试,寻找方法

1、自己试着把这题变成我们学过的旧知识,在自己的练习本上试试。

2、师:你不仅要会算,还要把道理说清楚,有了一种方法,还有没有第二种方法,第三种方法?(在此期间请学生到黑板板书不同的方法)

3、同桌交流整理。

师:怎样才能使老师听明白?先同桌之间互相当小老师试试,看能不能使对方听懂。开始交流。

3、全班汇报,汇总解答策略。

师:我发现刚才在讨论的时候大家学习习惯特别好,学习效果一定很好。谁想出了一种方法?有两种的吗?还有没有更多的?(把学生的方法写到黑板上来,并请学生来介绍)这是谁写的,请你来说说?

可能会出现:

第一种方法:31×10=310 31×2=62 310+62=372

师:为什么这么列,这是什么意思?(31×12没学过,但我们可以转化成我们学过的知识,31×12表示12个31相加,可以把它看成10个31与2个31相加)你们明白了?

或出现12×30=360 12×1=12 360+12=372

师:这两题方法有什么共同的地方(都把一个因数拆成两数之和,再与另一个因数相乘)我们可以把它看成是同一种方法)

师:为什么要拆呀?

师:看来大家很有自己的想法,想到把新知识转化成旧知识来解决。

第二种方法:31×4×3 31×2×6

那这又是什么意思呢(把一个因数拆成两个因数的积)老师发现我们班小朋友真是了不得,你们知道吗你们刚才用的方法是我们四年级才要学的。

[1][2][3]下一页

第三种方法:

1、他是用什么方法做的?用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)

若学生没出现竖式的形式

师:我们以前学习两位数乘一位数的时候可以用竖式做,那两位数乘两位数可以吗?自己试着做做看。用这种方法做的时候要注意什么?(相同数位对齐,从个位算起)

2、 62是怎么来的?(2个31)也就是用第二个因数的个位去乘第一个因数

3、310是怎么来的?(10个31)那3728呢?(板书:与第一种方法用线联系

起来)

31

× 12

———

62

310

372

4、若学生还有其他不同的算式,

31

× 2

———

62

31

× 10

310

62

+ 310

372

(1) 你为什么这么做?看来大家很有自己的想法。

(2)看着这三个板书,你想不想说什么?是不是觉得有点繁?能不能再创造出一个算式,把三个算式的意思也能用一个算式也能明白?再试试。我已经发现很多小朋友智慧的火花了。

4、请他板演后,问:大家能看明白是什么意思吗?每一步表示什么意思?同桌互相说一说(提醒:分几步做?)

5、看着板书现在你想说什么?(第一种方法与笔算方法的思路是一样的,一个横式表达,一个竖式表达。竖式的形式以前我们也见过,我想今天学习了两位数乘两位数,竖式这种形式应该重点掌握。

6、现在我们能知道镇小有多少学生吗?(板书完整横式)观察竖式,填一填2个班有( )人 10个班有( )人 12个班有( )人

23

× 13

———

69

230

299

7、尝试用竖式练习23×13。(学生再次尝试计算)有困难的同学可以模仿上面一题也可以求助于你的同桌

(1)谁愿意把你的解法展示给大家看(实物投影)并边介绍

你的想法

(2)你能看明白这个算式的每一步是怎么来的,表示什么意

思吗?同桌互相说一说

有什么地方不懂的?想问大家的。(实物投影)

8、揭示课题

师:这节课我们在学习什么?(两位数乘两位数的笔算)碰到这个新问题我们是怎样来学习的?(把新问题转化成我们学过的旧知识)今天我们用到了哪些旧知识?现在你能说说应该怎样笔算两位数乘两位数吗?

师:是呀,我们学习数学往往都是把新问题转化为旧知识来进行的,今天的新知识,对于后面要学的知识来说又变成了旧知识,因此我们必须今天的知识学好,学扎实。

23

× 13

———

69

41

……此处隐藏14388个字……p>想:如果用乘法怎样列式呢?

环节二:算法探究

1、估算:

请你估算一下,24×12大约是多少?说说你的估算情况。

2、自主探索:学生独立在练习纸上计算24×12,教师进行巡视指导。

3、小组交流:小组内进行核对算法及答案。(学生组内交流)

4、学生汇报:展示不同算法并说说算法。

5、师生评议:请学生说说你喜欢哪种算法?为什么?

6、研究笔算:

(1)学生探讨笔算算理;

(2)师生共同小结笔算算理:

24

×12

——————

48……24×2的积,问:48是怎么来的?

24……24×10的'积,问:这里的24是表示多少?

——————

288

环节三:巩固练习

1、解题活动:小博士寻宝、探路。

2、游戏活动:帮小动物找鞋,比比哪组找得多。

3、拓展延伸:

①我们学校的阶梯教室共有22排,每排有14个座位。如果有300位老师来参加听课活动,能坐得下吗?

②课后探讨:123×23(三位数乘两位数)

环节四:教学小结

通过今天的学习,你有什么收获?两位数乘两位数的笔算,最关键是什么?你有什么好的建议?

七、教学反思

本节课,我以“情境引入(层次推进)——算法探究(自主、合作学习)笔算算理(师生探讨)——专项练习(解决问题)”三个环节来讲述两位数乘两位数的笔算。是在学生比较熟练地口算整十、整百数,估算和笔算两位数乘一位数的基础上进行教学的。

1、注重笔算与算理结合,体验计算。让学生探讨计算方法,理解竖式计算的算理。增强自主学习的能力。

2、注重学生主动探索,加强竞争意识,在活动中提高他们的积极性与增强学习兴趣和加强思想交流。

3、在判断与交流中逐步完善知识结构。强化提升已有的知识经验。

笔算两位数乘两位数教学设计13

学习内容:

人教版三年级下册第63页例1,两位数乘两位数的笔算乘法(不进位)。

学习目标:

1.理解两位数乘两位数的笔算算理,理解乘的顺序以及第二部分积的书写位置。

2.掌握两位数乘两位数的笔算方法。

3.在小组合作学习探究活动中感受学习数学的乐趣。

学习重点:

在理解算理的基础上掌握两位数乘两位数的笔算乘法(不进位)。

学习难点:

理解乘的顺序以及第二部分积的书写位置。

教学准备:

多媒体课件等。

教学过程:

一、复习旧知,引入新课。

1.口算。

12×20=24×10=50×20=70×2=

21×10=11×30=60×40=30×5=

2.谈话导入。

师:同学们,我们已经学习了两位数乘一位数的笔算乘法和两位数乘两位数的口算。今天,我们继续两位数乘两位数的笔算乘法。(板书课题)

二、自主学习,预习导学。

师:为了使同学们更好地学习这一部分的知识,请看自学提示。(指名读)

看第63页的情景图,观察并思考下列问题:

(1)图中有哪些信息?把这些信息完整地叙述下来。(独立思考解决)

(2)根据题中的已知条件和问题列出算式,并算出结果。(尝试用不同的方法进行计算)

(3)试着用自己的话说一说笔算乘法的方法。(4人一组讨论、交流)

学生自学、讨论。

三、合作探究,问题解决。

指名回答自学提示中的问题,师随着学生的回答板书。

1、板书:妈妈买了一套书12本,每本24元。妈妈一共要付多少钱?

2、24×12=(元)

师:同学们,你能用已经学过的知识求出得数吗?

生:(能)可以把12本分成2本和10本两个部分,先求出2本书多少钱;再求出10本书多少钱;然后把这两部分钱加起来就是妈妈要付的钱。【12=2+1024×2=48(元)24×10=240(元)240+48=288(元)】

师:你是从哪里看到的?

生:……(你真是一个有心的`孩子。)

师:其实,我们也可以把这个过程用竖式进行计算。请看(屏幕出示:)

242448

×2×10+240

48240288

(1)师:刚才求妈妈12本书用288元,计算时一共用了3个竖式。我们共同尝试一下,看能不能把这3个竖式合并起来写成一个竖式呢?来,看着我们的计算过程。刚才的第一步我们是先算什么的?怎样计算?(先算2本多少钱,用24乘2。)

○1计算24乘2先算什么呢?再算什么?(先算2乘个位上的4表示8个一;再算2乘十位上的2表示4个十,合起来是48。)

○2在48的旁边注明24×2的积。

(2)此时教师揭去盖在第二个因数十位上“1”的东西,并问第二步要算什么?怎样算?(第二步算的是10本书一共多少钱,24乘10得240。)

○1教师对着竖式说明:十位上的“1”表示10,所以用十位上的“1”去乘24就是用10去乘24;先用1个十乘4得40,“4”要写在十位上,个位上写“0”;再用10乘2得20,但是这个2表示2个十,所以10乘2得到的20也表示20个十,也就是200,这个“2”要写在百位上。因此求得的积是240。

○2在240的旁边注明24×10的积。

○3师:这次求得的积个位上的“0”应该如何处理呢?

生:“个位的0不写”。

师:你是怎么知道的?

生:书上小括号里提示我们的。

师:你真是一个细心的孩子,大家应该向他学习。想想个0为什么可以不写呢?

生:因为用十位上的“1”去乘24,得到的24就表示24个十,也就是240,所以在这里个位上的0不写。

(3)第三步要算什么?(把10本书的钱和2本书的钱加起来,也就是把48与240加起来,得288。)

3.师:谁能说一说这道题的计算顺序和方法。

生:先用2乘24得48,得数的末位要与因数的个位对齐;再用1乘24得24,得数的末位要与因数的十位对齐;最后把两次乘得的积加起来。

四、展示讲评、内化提升。

出示例1的竖式,引导学生总结方法。

1.以小组为单位说一说这道题的计算顺序和方法,然后各组派代表说。

2.竖式中48和24比较,哪个数大,为什么?()

3.计算两位数乘两位数时,先用第二个因数()位上的数去乘第一个因数的每一位,得数的末位要与因数的()位对齐;再用第二个因数()位上的数去乘第一个因数的每一位,得数的末位要与因数的()位对齐;最后把两次乘得的积()。

《笔算两位数乘两位数教学设计.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式